OpenCV与图像处理实战(一):车道线检测

大家好,我是【AI 菌】。本专栏以实战为主,分享一些用opencv进行图像处理的实用案例。本专栏会持续更新,欢迎关注和交流!

还没有搭建环境的小伙伴,戳戳这篇:VS2015 + OpenCV3.1 环境配置与项目搭建(C++版)


一、效果展示

对车辆所在车道的车道线检测效果:

在这里插入图片描述

二、基本思路

如下图所示,实现车道线的 基本流程 如下:

  1. 输入原图或视频。
  2. 使用Canny()进行边缘检测。
  3. 提取感兴趣区域。
  4. 提取轮廓,同时过滤掉不是车道线的轮廓。
  5. 对轮廓内点进行直线拟合。
  6. 在原图上画出检测到的车道线。

在这里插入图片描述

三、实战讲解

3.1 主函数

在主函数中,我们需要读取视频,对每一帧都进行车道线检测处理。

int main()
{
	VideoCapture cap("road.mp4");

	int height = cap.get(CAP_PROP_FRAME_HEIGHT); //480
	int width = cap.get(CAP_PROP_FRAME_WIDTH);  //856
	int count = cap.get(CAP_PROP_FRAME_COUNT);
	int fps = cap.get(CAP_PROP_FPS);
	//cout << height << " " << width << " " << count << " " << fps;
	
	while (1)
	{
		Mat frame;
		cap >> frame;
		//imshow("原图", frame);
		detect_line(frame);
		waitKey(30);
	}
	return 0;
}

3.2 直线拟合

当我们得到了每一个车道线轮廓时,需要对轮廓内的点进行直线拟合。这样得到的车道线鲁棒性会更好。(前提是,车道线本身是直的)

//直线拟合
Mat fitLines(Mat &img)
{
	Mat img_fitLines = Mat::zeros(img.size(), CV_8UC3);

	int height = img.rows;
	int width = img.cols;

	int h_center = height / 2;
	int w_center = width / 2;

	vector<Point> leftLine;
	vector<Point> rightLine;

	//左车道线
	for (size_t i = 100; i < w_center ; i++)       //100-428(左)
	{
		for (size_t j = h_center; j < height; j++)  //240-480(下)
		{
			if (img.at<uchar>(j, i) == 255) //白色
				leftLine.push_back(Point(i, j));
		}
	}

	if (leftLine.size() > 2)
	{
		Vec4f left_para; //直线拟合输出参数
		Point point_l; //直线上的一点

		fitLine(leftLine, left_para, DIST_L1, 0, 0.01, 0.01);  //直线拟合
		double kl = left_para[1] / left_para[0];  //直线斜率
		
		point_l.x = left_para[2];
		point_l.y = left_para[3];

		int y1 = height / 2 + 60;
		int x1 = (y1 - point_l.y) / kl + point_l.x;

		int y2 = height - 40;
		int x2 = (y2 - point_l.y) / kl + point_l.x;

		left_start = Point(x1, y1);
		left_end = Point(x2, y2);

		line(img_fitLines, left_start, left_end, Scalar(0, 0, 255), 8, 8, 0);

		left_start_last = left_start;
		left_end_last = left_end;
		x2_last = x2;
	}
	else
	{
		line(img_fitLines, left_start_last, left_end_last, Scalar(0, 0, 255), 8, 8, 0);
	}


	//右车道线
	for (size_t i = w_center; i < width; i++)   //428-856(右)
	{
		for (size_t j = h_center; j < height; j++)  //240-480(下)
		{
			if (img.at<uchar>(j, i) == 255)
				rightLine.push_back(Point(i, j));
		}
	}

	if (rightLine.size() > 2)
	{
		Point right_start = rightLine[0];
		Point right_end = rightLine[rightLine.size() - 1];

		line(img_fitLines, right_start, right_end, Scalar(0, 0, 255), 8, 8, 0);
	}

	return img_fitLines;
}

3.3 车道线检测

这个函数是主要功能函数,主要的执行步骤如下:

  • 将原图转为灰度图,然后采用Canny()进行边缘检测。
  • 提取感兴趣区域,过滤掉天空和旁景。
  • 寻找处理后图像中的轮廓,过滤掉不是车道线的轮廓。
  • 调用直线拟合函数fitLines(),对轮廓中的点进行直线拟合,最后在原图上显示车道线。
void detect_line(Mat &frame)
{
	Mat gray, binary;
	cvtColor(frame, gray, COLOR_BGR2GRAY); //转灰度图
	Canny(gray, binary, 150, 300); //边缘检测
	//imshow("边缘检测", binary);

/********************过滤掉天空与旁景色********************/
	for (size_t i = 0; i < (gray.rows / 2 + 40); i++)
	{
		for (size_t j = 0; j < gray.cols; j++)
		{
			binary.at<uchar>(i, j) = 0;
		}
	}


	for (size_t i = 450; i < gray.rows; i++)
	{
		for (size_t j = 0; j < gray.cols; j++)
		{
			binary.at<uchar>(i, j) = 0;
		}
	}
	imshow("过滤后", binary);
/*********************************************************/

    //寻找轮廓
	vector<vector<Point>> contours;  //向量中是若干个点的集合,每一个集合代表一个轮廓,包含若干个点
	findContours(binary, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); //获取外轮廓,且仅保存轮廓的拐点信息

	Mat img_output = Mat::zeros(gray.size(), gray.type());

	
/*****************************轮廓分析(筛选)***************************
    1.排除轮廓(长度小于5、面积不足10的,同时矩形的高不能太大)
    2.排除最小外切矩形角度太小的或者太大的(20,84)
    3.排除椭圆拟合角度过小的
***********************************************************************/
	for (size_t i = 0; i < contours.size(); i++)
	{
	    //计算每个轮廓的面积和周长
		double length = arcLength(contours[i],true);
		double area = contourArea(contours[i]);
		//cout << "轮廓" << i << "的周长是:" << length << " " << "面积是" << area << endl;
		
		//得到包覆此轮廓的最小正矩形
		Rect rect = boundingRect(contours[i]);

		//最小包围矩形(斜)
		RotatedRect mAR = minAreaRect(contours[i]);
		double angle = abs(mAR.angle);  //倾斜角度

		if (length < 5.0 || area < 10.0)
			continue;
		//if (rect.y > gray.rows - 50)
			//continue;
		if (angle > 84.0 || angle < 20.0)  //去掉角度大的边线
			continue;

		drawContours(img_output, contours, i, Scalar(255), 2, 8);
		imshow("排除部分轮廓后", img_output);
	}

	Mat dst;
	Mat roadLines = fitLines(img_output);
	addWeighted(frame, 0.9, roadLines, 0.5, 0, dst);
	imshow("最终车道线显示", dst);
}

温馨提示: 该方法只适合对直道检测,同时在检测过程中:要根据自己视频或图像的大小,选择合适的感兴趣区域,同时调整相关参数,方能获得不错的检测效果!


如果您需要完整代码测试视频,可关注我的公众号,回复:车道线。更多精彩等着你哦!

在这里插入图片描述

AI 菌 CSDN认证博客专家 博客专家 CSDN合作伙伴 算法实习僧
研究僧一枚,CSDN博客专家,公众号【AI 修炼之路】作者。专注于无人驾驶(环境感知方向),热衷于分享AI、CV、DL、ML、OpenCV、Python、C++等相关技术文章。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付 19.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值