2020年4月蓝桥杯(软件类)第二次模拟赛:题目+解答


1 容量单位

【问题描述】
在计算机存储中,12.5MB是多少字节?
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
答案
13107200
解析
12.5MB = 12.5x1024 KB = 12.5x1024x1024 B = 13107200B

2 最多边数

【问题描述】
一个包含有2019个结点的有向图,最多包含多少条边?(不允许有重边)
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
答案
4074342
解析
任意两点组成边,边有向,一来一回算两条边 ,所以是 2 C n 2 = n ∗ ( n − 1 ) 2C_n^2=n*(n-1) 2Cn2=n(n1)

3 单词重排

【问题描述】
将LANQIAO中的字母重新排列,可以得到不同的单词,如LANQIAO、AAILNOQ等,注意这7个字母都要被用上,单词不一定有具体的英文意义。
请问,总共能排列如多少个不同的单词。
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
答案
2520
解析
求全排列,去重,计数。 A 7 7 / 2 = 2520 A_7^7/2=2520 A77/2=2520

4 括号序列

【问题描述】
由1对括号,可以组成一种合法括号序列:()。
由2对括号,可以组成两种合法括号序列:()()、(())。
由4对括号组成的合法括号序列一共有多少种?
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
答案
14
解析
深度为1的序列有1种:()()()()
深度为2的有7种:(())()()、()(())()、()()(())、(()()())、(()())()、()(()())、(())(())
深度为3的有5种:((()))()、()((()))、((())())、(()(()))、((()()))
深度为4的有1种:(((())))
所以答案为:1+7+5+1=14。

5 反倍数

【问题描述】
给定三个整数 a, b, c,如果一个整数既不是 a 的整数倍也不是 b 的整数倍还不是 c 的整数倍,则这个数称为反倍数。
请问在 1 至 n 中有多少个反倍数。
【输入格式】
输入的第一行包含一个整数 n。
第二行包含三个整数 a, b, c,相邻两个数之间用一个空格分隔。
【输出格式】
输出一行包含一个整数,表示答案。
【样例输入】
30
2 3 6
【样例输出】
10
【样例说明】
以下这些数满足要求:1, 5, 7, 11, 13, 17, 19, 23, 25, 29。
【评测用例规模与约定】
对于 40% 的评测用例,1 <= n <= 10000。
对于 80% 的评测用例,1 <= n <= 100000。
对于所有评测用例,1 <= n <= 1000000,1 <= a <= n,1 <= b <= n,1 <= c <= n。
解析
迭代+判断

代码

#include<iostream>
using namespace std; 

int main(){
 int n=0;
 cin>>n;
 int a=0,b=0,c=0;
 cin>>a>>b>>c;
 int count = 0;
 for(int i=1; i<=n; i++){
  if(i%a!=0&&i%b!=0&&i%c!=0)
   count++;
 }
 cout<<count<<endl;
 return 0;
}

6 凯撒密码

【问题描述】
给定一个单词,请使用凯撒密码将这个单词加密。
凯撒密码是一种替换加密的技术,单词中的所有字母都在字母表上向后偏移3位后被替换成密文。即a变为d,b变为e,…,w变为z,x变为a,y变为b,z变为c。
例如,lanqiao会变成odqtldr。
【输入格式】
输入一行,包含一个单词,单词中只包含小写英文字母。
【输出格式】
输出一行,表示加密后的密文。
【样例输入】
lanqiao
【样例输出】
odqtldr
【评测用例规模与约定】
对于所有评测用例,单词中的字母个数不超过100。

解析
遍历+转换

代码

#include<iostream>
using namespace std; 

int main(){
 string str;
 getline(cin, str);
 for(int i=0; i<str.size(); i++) 
 {
  if(str[i]<'x')
   str[i] = str[i] + 3;
  else
   str[i] = str[i] - 23; 
 }
 cout<<str<<endl;
 return 0;
}

7 螺旋

【问题描述】
对于一个 n 行 m 列的表格,我们可以使用螺旋的方式给表格依次填上正整数,我们称填好的表格为一个螺旋矩阵。
例如,一个 4 行 5 列的螺旋矩阵如下:
1 2 3 4 5
14 15 16 17 6
13 20 19 18 7
12 11 10 9 8
【输入格式】
输入的第一行包含两个整数 n, m,分别表示螺旋矩阵的行数和列数。
第二行包含两个整数 r, c,表示要求的行号和列号。
【输出格式】
输出一个整数,表示螺旋矩阵中第 r 行第 c 列的元素的值。
【样例输入】
4 5
2 2
【样例输出】
15
【评测用例规模与约定】
对于 30% 的评测用例,2 <= n, m <= 20。
对于 70% 的评测用例,2 <= n, m <= 100。
对于所有评测用例,2 <= n, m <= 1000,1 <= r <= n,1 <= c <= m。

分析
先确定矩阵的上下左右边界,然后按顺时针依次存入每条边界。存完一轮边界后(一圈四次),更新边界。直到存入的元素数=n*m时,结束循环。

代码

#include<iostream>
#include<vector>
using namespace std; 

int main(){
 int n=0,m=0,r=0,c=0;
 cin>>n>>m;
 cin>>r>>c;
 vector<vector<int> > M(n, vector<int>(m,0));
 
 int count=0;
 //初始化上、下、左、右的边界 
 int top=0, bottle=n-1, left=0, right=m-1;
 
 while(count<m*n){
  //上 
  for(int j=left; j<=right&&count<m*n; j++)
   M[top][j] = ++count;
  //右 
  for(int i=top+1; i<=bottle&&count<m*n; i++)
   M[i][right] = ++count;
  //下 
  for(int j=right-1; j>=left&&count<m*n; j--)
   M[bottle][j] = ++count;
  //左 
  for(int i=bottle-1; i>=top+1&&count<m*n; i--)
   M[i][left] = ++count;
  //更新边界 
  top++;
  bottle--;
  left++;
  right--;
 }
 
 cout<<M[r-1][c-1]<<endl;; 
 return 0;
}

8 摆动序列

【问题描述】
如果一个序列的奇数项都比前一项大,偶数项都比前一项小,则称为一个摆动序列。即 a[2i]<a[2i-1], a[2i+1]>a[2i]。
小明想知道,长度为 m,每个数都是 1 到 n 之间的正整数的摆动序列一共有多少个。
【输入格式】
输入一行包含两个整数 m,n。
【输出格式】
输出一个整数,表示答案。答案可能很大,请输出答案除以10000的余数。
【样例输入】
3 4
【样例输出】
14
【样例说明】
以下是符合要求的摆动序列:
2 1 2
2 1 3
2 1 4
3 1 2
3 1 3
3 1 4
3 2 3
3 2 4
4 1 2
4 1 3
4 1 4
4 2 3
4 2 4
4 3 4
【评测用例规模与约定】
对于 20% 的评测用例,1 <= n, m <= 5;
对于 50% 的评测用例,1 <= n, m <= 10;
对于 80% 的评测用例,1 <= n, m <= 100;
对于所有评测用例,1 <= n, m <= 1000。

思路
深度优先搜索,实现时间复杂度:O(n^3),解题步骤如下:

(1) 确定题目要求
奇数项>偶数项,偶数项<奇数项,组成摇摆数列。
因此,第一项last1可以是:2 ~ n
第二项last2可以是:1 ~ last-1
第三项last3可以是:last3+1 ~ n

第k项lastk可以时:

  • 若k为奇数,lastk可以是:last(k-1)+1 ~ n
  • 若k为偶数,lastk可以是:1 ~ last(k-1)-1

(2) 设定递归函数f(),确定递归公式
假设:当第k个数确定为last时,该序列所有的情况数是f(k, last)

则f(1, 2) :表示当第1个数是2时,序列的所有情况数
f(1, 3):表示当第1个数是3时,序列的所有情况数

因此所有的情况数:f(1, 2) + f(1, 3) + … + f(1, m)
现在分别求出:f(1, 2) 、f(1, 3)、…、f(1, m)即可

我们知道

  • 若k为偶数,f(k, last) 可以分成第k+1个数是:last+1、last+2、、、n 这么多种情况,即有:f(k, last) = f(k+1, last+1) + f(k+1, last+2) + … + f(k+1, n)
  • 若k为奇数,f(k, last)可以分成:f(k, last) = f(k+1, 1) + f(k+1, 2) + … + f(k+1, last-1)

因此,可一总结出递推公式:

  • 若k为奇数
for(int i=1; i<last; i++)
	dfs(k, last) += dfs(k+1, i) 
  • 若k为偶数
for(int i=last+1; i<n+1; i++)
	dfs(k, last) += dfs(k+1, i) 

(3) 确定递归起点
而递归起点(选定第一位,可选是2 to n)也是一个循环:

for i in range(2, n + 1):
    ans = (ans + dfs(i, 1)) % MOD

代码

#include<iostream>
using namespace std;

int MOD =10000;
int mem[1001][1001]; 
int m=0, n=0;

//第k个数确定为last时,序列的总数 
int dfs(int k, int last){
	if(k==m)
		return 1;
	if(mem[k][last]!=0)
		return mem[k][last]; 
	if(k%2==1) //奇数 
		for(int i=1; i<last; i++)
			mem[k][last] = (mem[k][last] + dfs(k+1, i))%MOD;
	else    //偶数 
		for(int i=last+1; i<n+1; i++)
			mem[k][last] = (mem[k][last] + dfs(k+1, i))%MOD;
	return mem[k][last];
}

int main()
{
	cin>>m>>n;
	int ans = 0;
	for(int j=2; j<n+1; j++)
		ans = (ans + dfs(1, j))%MOD;
	cout<<ans<<endl;
	
	return 0; 
} 

9 通电

【问题描述】
2015年,全中国实现了户户通电。作为一名电力建设者,小明正在帮助一带一路上的国家通电。
这一次,小明要帮助 n 个村庄通电,其中 1 号村庄正好可以建立一个发电站,所发的电足够所有村庄使用。
现在,这 n 个村庄之间都没有电线相连,小明主要要做的是架设电线连接这些村庄,使得所有村庄都直接或间接的与发电站相通。
小明测量了所有村庄的位置(坐标)和高度,如果要连接两个村庄,小明需要花费两个村庄之间的坐标距离加上高度差的平方,形式化描述为坐标为 (x_1, y_1) 高度为 h_1 的村庄与坐标为 (x_2, y_2) 高度为 h_2 的村庄之间连接的费用为
s q r t ( ( x 1 − x 2 ) ∗ ( x 1 − x 2 ) + ( y 1 − y 2 ) ∗ ( y 1 − y 2 ) ) + ( h 1 − h 2 ) ∗ ( h 1 − h 2 ) sqrt((x_1-x_2)*(x_1-x_2)+(y_1-y_2)*(y_1-y_2)) + (h_1-h_2)*(h_1-h_2) sqrt((x1x2)(x1x2)+(y1y2)(y1y2))+(h1h2)(h1h2)
在上式中 sqrt 表示取括号内的平方根。请注意括号的位置,高度的计算方式与横纵坐标的计算方式不同。
由于经费有限,请帮助小明计算他至少要花费多少费用才能使这 n 个村庄都通电。
【输入格式】
输入的第一行包含一个整数 n ,表示村庄的数量。
接下来 n 行,每个三个整数 x, y, h,分别表示一个村庄的横、纵坐标和高度,其中第一个村庄可以建立发电站。
【输出格式】
输出一行,包含一个实数,四舍五入保留 2 位小数,表示答案。
【样例输入】
4
1 1 3
9 9 7
8 8 6
4 5 4
【样例输出】
17.41
【评测用例规模与约定】
对于 30% 的评测用例,1 <= n <= 10;
对于 60% 的评测用例,1 <= n <= 100;
对于所有评测用例,1 <= n <= 1000,0 <= x, y, h <= 10000。

思路

本题考查的是MST(Minimum Spanning Tree,最小生成树),对于该类问题,一般有两种解决方法:Prim和Kruskal。

Prim算法是从点的方面考虑构建一颗MST,大致思想是:

  • 设图G顶点集合为U,首先任意选择图G中的一点作为起始点a,将该点加入集合V,此时集合V={a};
  • 再从集合U - V中找到另一点b使得点b到V中任意一点的权值最小,此时将b点也加入集合V,现在的集合V={a,b};
  • 再从集合U - V中找到另一点c使得点c到V中任意一点的权值最小,此时将c点加入集合V,此时V={a,b,c};
  • 以此类推,直至所有顶点全部被加入V,此时就构建出了一颗MST。因为有N个顶点,所以该MST就有N-1条边,每一次向集合V中加入一个点,就意味着找到一条MST的边。

代码

#include<iostream>
#include<vector>
#include<cmath>
#include<stdio.h>
using namespace std;

//初始化 
const static int N = 1010;
double dis[N];
bool vis[N];

//计算距离 
double get_dist(int x1, int y1, int h1, int x2, int y2, int h2){
    return sqrt( (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) ) + (h1 - h2) * (h1 - h2);
}

//最小树 
double minCostConnectPoints(vector<vector<int>>& points) {
    int n = points.size();
    for(int i = 0; i < n; i ++){
        dis[i] = 1e8;
    }
    dis[0] = 0;
    for(int i = 0; i < n; i ++)
    {
        int t = -1;
        int minn = 1e8;
        for(int j = 0; j < n; j ++)
            if(! vis[j] && (t == -1 || dis[j] < minn))
                t = j,minn = dis[j];
        vis[t] = true;
        
        for(int j = 0; j < n; j ++)
            if(! vis[j])
                dis[j] = min(dis[j], get_dist(points[j][0],points[j][1],points[j][2],points[t][0],points[t][1],points[t][2]));
    }
    
    double ans = 0;
    for(int i = 0; i < n; i ++)
        if(vis[i]) ans += dis[i];
    return ans;
}

int main(){
	
	// 输入n个村庄的位置 
	int n=0;
	cin>>n;
	vector<vector<int> > Points(n, vector<int>(3,0));
	for(int i=0; i<n; ++i){
		for(int j=0; j<3; ++j){
			cin>>Points[i][j]; 
		}
	}
	
	//计算最小代价
	double ans = minCostConnectPoints(Points);
	printf("%.2f", ans);
	
	return 0;
}

10 植树

【问题描述】
小明和朋友们一起去郊外植树,他们带了一些在自己实验室精心研究出的小树苗。
小明和朋友们一共有 n 个人,他们经过精心挑选,在一块空地上每个人挑选了一个适合植树的位置,总共 n 个。他们准备把自己带的树苗都植下去。
然而,他们遇到了一个困难:有的树苗比较大,而有的位置挨太近,导致两棵树植下去后会撞在一起。
他们将树看成一个圆,圆心在他们找的位置上。如果两棵树对应的圆相交,这两棵树就不适合同时植下(相切不受影响),称为两棵树冲突。
小明和朋友们决定先合计合计,只将其中的一部分树植下去,保证没有互相冲突的树。他们同时希望这些树所能覆盖的面积和(圆面积和)最大。
【输入格式】
输入的第一行包含一个整数 n ,表示人数,即准备植树的位置数。
接下来 n 行,每行三个整数 x, y, r,表示一棵树在空地上的横、纵坐标和半径。
【输出格式】
输出一行包含一个整数,表示在不冲突下可以植树的面积和。由于每棵树的面积都是圆周率的整数倍,请输出答案除以圆周率后的值(应当是一个整数)。
【样例输入】
6
1 1 2
1 4 2
1 7 2
4 1 2
4 4 2
4 7 2
【样例输出】
12
【评测用例规模与约定】
对于 30% 的评测用例,1 <= n <= 10;
对于 60% 的评测用例,1 <= n <= 20;
对于所有评测用例,1 <= n <= 30,0 <= x, y <= 1000,1 <= r <= 1000。

解析
博主正在努力更新中。。。

相关文章
2020年3月蓝桥杯(软件类)第一次模拟赛:题目+解答

AI 菌 CSDN认证博客专家 博客专家 CSDN合作伙伴 算法实习僧
研究僧一枚,CSDN博客专家,公众号【AI 修炼之路】作者。专注于无人驾驶(环境感知方向),热衷于分享AI、CV、DL、ML、OpenCV、Python、C++等相关技术文章。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付 19.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值